NMDA receptor dependence of the input specific NMDA receptor-independent LTP in the hippocampal CA1 region.

نویسندگان

  • M Pananceau
  • B Gustafsson
چکیده

An important characteristic of long-term potentiation (LTP) in the hippocampal CA1 region is that it is specific for those synapses which are active during the induction event. This input specificity is commonly attributed to the location and properties of the N-methyl-D-aspartate (NMDA) receptor channel. Experiments using strong high-frequency orthodromic activation have suggested that input-specific LTP can occur also in the absence of NMDA receptor activation. The present experiments have re-examined this question. They were performed in the CA1 region of hippocampal slices, and the synaptic strength was evaluated from the initial slope of the dendritically recorded field potential. In agreement with previous reports, 0.5 s, 200 Hz, orthodromic trains were found to lead to a substantial input-specific LTP (averaging 62%) in the presence of the competitive NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (20 microM). Under conditions of higher NMDA receptor blockade considerably less LTP was evoked. In 50 microM D-AP5 and 20 microM chloro-kynurenate LTP averaged 13.4%, and after addition of 20 microM (+)-dizicilpine maleate (MK-801) LTP averaged 5.9%. On the other hand, in 20 microM D-AP5 and 20 microM of the calcium channel antagonist nifedipine LTP averaged 49.9%. The present results suggest that NMDA receptor activity remaining in high concentrations of AP5 is sufficient to underly LTP induction under strong induction conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats

Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats

  The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 752 1-2  شماره 

صفحات  -

تاریخ انتشار 1997